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A Simple Recursive Algorithm for Diagnosis of Abrupt
Changes in Random Signals

Igor V. Nikiforov

Abstract—We address the problem of detecting and isolating abrupt
changes in random signals. An asymptotic optimal solution to this problem,
which has been proposed in previous works, involve the number of compu-
tations at time which grows to infinity with . In this correspondence, we
propose another more realistic criterion, establish a new simple recursive
change detection/isolation algorithm, and investigate its statistical proper-
ties.

Index Terms—Kullback–Leibler information, minimax detection, se-
quential detection and isolation, sequential decision procedures, signal
detection.

I. INTRODUCTION

This correspondence treats the problem ofabrupt change diagnosis
(detection and isolation)in random signals. An optimal solution to
this problem was obtained in [5]–[7]. Thenoveltyof this work with
respect to the previous papers is somepractical aspects of the pro-
posed theory: a more realistic criterion of optimality and a simple re-
cursive solution. First, we minimize now the supremum of the mean
delay for detection/isolation over the change timet0 instead of min-
imizing this supremum over the past “trajectory”X1; . . . ; Xt �1 of
stochastic process andt0 together. Second, in the previous papers we
fixed a priori the change timet0 = 1 in the definition of the proba-
bility of false isolation to simplify theoretical difficulties. In practice,
it is difficult to justify this assumption, for this reason we examine now
the supremum of the error probability overt0 � 1. Next, the algo-
rithms developed in [5]–[7] involve the number of the likelihood ratio
(LR) computations at timetwhich grows to infinity witht. Now we de-
sign asimple recursivealgorithm which involves one LR computation
at every stage. The correspondence is organized as follows. First, we
state the problem in Section II. Next, we discuss the design of the re-
cursive change diagnosis algorithm and its statistical properties in Sec-
tion III. The main results are established in Theorems 1 and 2. Finally,
we compare in this section the theoretical formulas and the results of
Monte Carlo simulations.

II. PROBLEM STATEMENT

A. Model with Abrupt Changes

We consider a finite family of distributions

P = fPl; l = 0; . . . ; K � 1g

with densitiesfpl; l = 0; . . . ; K�1g. Let (Xt)t�1 be an independent
random sequence observedsequentially

L(Xt) =
P0; if t < t0
Pl; if t � t0

(1)

wherel = 1; . . . ; K�1; andL( ) is the probability law. The change
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time t0 and numberl are unknown (but non random). Let

Zt(l; j) = log(p� (Xt)=p� (Xt))

be the log LR between hypothesesHl : P = Pl andHj : P = Pj .

B. Criterion of Optimality

The change detection/isolation algorithm has to compute a
pair (N; �) based on the observationsX1; X2; . . . ; where N is
the alarm time at which a�-type change is detected/isolated and
�; � = 1; . . . ; K � 1 is thefinal decision. LetP l

t be the distribution
of the observationsX1; X2; . . . ; Xt ; Xt +1; . . . whent0 = 1; 2; . . .
and Xt is the first observation with distributionPl. In previous
papers [5]–[7] we minimized the “worst case” mean delay for
detection/isolation

���l = sup
t �1

esssupEl
t (N � t0 + 1 jN � t0; X1; . . . ; Xt �1):

Now we propose to measure the speed of detection/isolation with the
aid of the maximum mean delay for detection/isolation

�� = max
1�l�K�1

��l; ��l = sup
t �1

El
t (N � t0 + 1 jN � t0): (2)

In the case of change detection this performance index is discussed in
[8], [4]. We measure the levels of false alarms and false isolations by
using the following equation:

min
1�j�K�1

E0 inf
k�1

fN(k) : �(k) = jg = 

max
1�l�K�1

max
1�j 6=l�K�1

sup
t �1

�t (j; l) = � (3)

where�t (j; l) = PPP l
t (� = j 6= l jN � t0) is the error probability,

 is the minimum of the mean times before a false alarm, and� is
the maximum of the probability of a false isolation. In the above crite-
rion we suppose that there exists a sequenceN(1);N(2); . . . of false
alarms. The first false alarm of aj-type is defined byinfk�1fN(k) :
�(k) = jg.1 In brief, we require that the maximum mean detection/iso-
lation delay given by (2) should beas small as possiblesubject to the
constraints given by (3). In this correspondence, we will discuss the
asymptotic case when !1, � ! 0, such thatlog 

>
� log ��1.

III. RECURSIVEALGORITHM AND ITS STATISTICAL PROPERTIES

A. Recursive Algorithm

We denote a pairalarm time–final decisionfor the recursive algo-
rithm by (Nr; �r), where

Nr = min N
1

r ; . . . ; N
K�1
r

�r = argmin N
1

r ; . . . ; N
K�1
r : (4)

We define the stopping timeN l
r in the following recursive manner

N
l
r=inf t�1: min

0�j 6=l�K�1
[gt(l; 0)�gt(j; 0)� hl;j ]�0 (5)

1Naturally, we assume that after a false alarm the observation process restarts
immediately from scratch.
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where the recursive decision functionsgt(l; 0) are defined by

gt(l; 0) = (gt�1(l; 0) + Zt(l; 0))
+
; x

+ = max(0; x);

g0(l; 0) = 0; l = 1; 2; . . . ; K � 1 (6)

and gt(0; 0) � 0. The thresholdshl;j are chosen by the following
formula:

hl;j =
hd; if l = 1; . . . ; K � 1 and j = 0

hi; if j; l = 1; . . . ; K � 1 and j 6= l
(7)

wherehd is the detection threshold andhi is the isolation threshold.

B. Discussion

Let us compare the design of the recursive rule (4)–(6) with the non-
recursive one. We start with the nonrecursive rule(Nn; �n) [5], [6]. If
for somek � t the observationsXk; . . . ; Xt are such thatall the LR
betweenHl andHj ; 0 � j 6= l � K � 1 are greater than or equal to
the thresholdshl;j

S
t
k(l; 0) =

t

i=k

Zi(l; 0) � hl;0

S
t
k(l; 1) =

t

i=k

Zi(l; 1) � hl;1; . . .

S
t
k(l;K � 1) =

t

i=k

Zi(l;K � 1) � hl;K�1

(i.e., the observations aresignificant for accepting the hypothesisHl

with respect to this set of alternatives) then the nonrecursive rule stops
the observation process at timet (Nn = t) and the final decision is
�n = l. In practice, this nonrecursive algorithm has two disadvan-
tages. First, sometimes (it depends on the mutual “geometry” of the
hypotheses) the probability of false isolation seriously increases when
t0 ! 1. It occurs due to an uncontrolled growth of some cumula-
tive sumsSt

1(m; j) whenX1; . . . ; Xt � P0.2 Second, the nonrecur-
sive algorithm cannot be rewritten directly in a recursive manner and
the number of the LR computations at timet grows to infinity witht.
Unlike this nonrecursive algorithm, the ruleN l

r (5) is based on the re-
cursive decision functionsgt(l; 0). It is easy to see that the recursive
algorithm (4)–(6) is nothing butK � 1 parallel CUSUM tests (see the
decision functionsg(1; 0); . . . ; g(l; 0)) plus a simple logical rule which
comparesgt(l; 0)�gt(j; 0)with the thresholdshl;j . Before the change
timet0, the nonnegative functionsgt(l; 0) are stochastically small (be-
causeE0(Zt(l; 0)) < 0) and, hence, only an insignificant growth of the
probability of false isolation takes place whent0 > 1. Let us note also
thatSt

t (l; j) ' gt(l; 0)�gt(j; 0) whent� t0 andEl(gt(j; 0)) � 0.
Therefore, both algorithms extract approximately the same information
from the observationsXt ; . . . ; Xt. Nevertheless, ifEl(gt(j; 0)) < 0
then the recursive algorithm partly losses the information from these
observations. In order to fix this gap we solve the detection/isolation
problem under the constrainthd � hi (see details in Theorems 1 and
2 and Appendix I).

C. Statistical Properties

Let us consider now the recursive detection/isolation algorithm
(Nr; �r) (4)–(6). We start with the mean detection/isolation delay�� :

2The introduction of the “window-limited scheme” (see [4], [11]), wheret�

n+1 � k � t andn is a tuning parameter, only partially improves the situation.

Theorem 1: Let (Nr; �r) be the test (4)–(6). Suppose that0 <

�l;j = El(Zt(l; j)) < 1 for all 0 � l 6= j � K � 1 and the fol-
lowing regularity condition is fulfilled: the moment-generating func-
tion (m.g.f.)'(�) = El(e

�Z (l;j)) <1 exists for all real� 2]��; �[,
where� > 0, and for all1 � l � K � 1 and0 � j 6= l � K � 1. Let
hl;j be given by (7) andhd � hi. Then

��l
<
� max

hd

�l;0
;

hi

minj 6=0;l �l;j
��

<
� max

hd

��d
;
hi

��i
(8)

ashi ! 1, where

�
�
d = min

1�j�K�1
�j;0; �

�
i = min

1�l�K�1
min

1�j 6=l�K�1�
:

Proof of Theorem 1:See Appendix I.

Let us discuss now the probability of false isolation. From Theorem
1 it follows that the delay for detection��l is mainly defined by the
stopping timeN l

r when the hypothesisHl is true. The false isolation
�r = j means that due to the noiseN j

r < �N j
r = mini6=jfN

i
rg given

Nr � t0. Naturally, this is a rare event. Roughly speaking, to estimate
�t (j; l) we have to compute the conditional probability to stop the
observation process by the “false” stopping timeN j

r before then it will
be stopped by the “true” stopping timeN l

r givenNr � t0. Therefore,
we prove now an asymptotic upper bound forsupt �1 �t (j; l). The
result is stated in the following theorem.

Theorem 2: Let (Nr; �r) be the test (4)–(6) and let the conditions
of Theorem 1 be satisfied. Then

� = max
1�l�K�1

max
1�j 6=l�K�1

sup
t �1

�t (j; l)

<
� max

1�l�K�1
max

1�j 6=l�K�1
e
�h

� max
hd

�l;0
;

hi

minj 6=0;l �l;j
+ hi

<
� e

�h max
hd

��d
;
hi

��i
+ hi ; ashi !1: (9)

Proof of Theorem 2:See Appendix II.

From Theorem 2 it results that ift0 = 1, then the probability of false
isolation is

�1 = max
1�l�K�1

max
1�j 6=l�K�1

�1(j; l)
<
� e

�h max
hd

��d
;
hi

��i

ashd � hi andhi ! 1. Hence, at least upper bounds for�1 and
� are close to each other. As a result, from [5] and (5), the mean time
before a false alarm for algorithm (4)–(6) is given by

E0( inf
k�1
fNr(k) : �r(k) = jg) � e

h
; for j = 1; . . . ; K � 1:

The analysis of Theorem 2 [5] and Theorem 4 [6] shows that the asymp-
totic equation

n(; �) � max
log 

��d
;
log ��1

��i

for the infimumn(; �) of ��� still hold with the mean delay�� instead
of ��� and the new definition of the class of tests (3).
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Corollary 1: The recursive detection/isolation algorithm(Nr; �r)
(4)–(6) is asymptotically equivalent to the optimal (nonrecursive) test
[5], [6] when t0 = 1

�� � n(; �) � max
log 

��d
;
log ��1

��i
;

as !1; � ! 0; log 
>
� log ��1: (10)

The above theoretical results have been obtained by ignoring the “ex-
cess” of the decision function~gt(l; j) = gt(l; 0) � gt(j; 0) over the
boundaryhl;j , namely, the quantity

� = (~gt(l; j)� hl;j j ~gt(l; j) � hl;j):

It is well known that thisWald’s approximation is not very accurate
(see details in [1], [3], [9]). For this reason, we suggest to use thecor-
rected termsproposed by Siegmund [9, Ch. X] for a possibly improved
approximation of the mean time before a false alarm and the proba-
bility of false isolation. The idea of this approximation is to replace
the thresholdhd by hd + %d andhi by hi + %i, where%d and%i are
positive constants. Hence, we get the followingcorrectedasymptotic
equations:3

E0 inf
k�1

fNr(k) : �r(k) = jg � e
h +%

sup
t �1

�t (j; l)
<
� e

�h �% max
hd

�l;0
;

hi

minj 6=0;l �l;j
+ hi : (11)

D. Example

The goal of this example is to compare the statistical properties of
the recursive (4)–(6) and nonrecursive [5], [6] rules using Monte Carlo
simulation and to compare the results of the simulation with (8) and
(9), (11). LetX 2 2 be a Gaussian vector,L(X) = N (�; I). We
consider the following hypotheses:

H0 : f�0 = (0; 0)T g

H1 : f�1 = (1; 0)Tg

H2(i) : f�2(i) = (#21(i); #22(i))
Tg

wherei = 1; 5. The values of�2(i) are given in Table I. The goal of
the first simulation is to detect/isolate the change fromH0 toH1 when
H2(i) varies betweenH2(1) andH2(5). The second simulation ex-
periment is devoted to the detection/isolation of the change fromH0 to
H2(i) whenH2(i) varies betweenH2(1) andH2(5). In this manner
we consider different combinations of the hypothesesH0, H1, and
H2(i) mutual geometry. The thresholds arehd = hi = 5. The results
are given in Tables II and III. Each point in these tables is based on107

simulations. The detection of the change fromH0 toH1 (see Tables
II) shows that the statistical characteristics of both tests (recursive and
nonrecursive) are comparable. Nevertheless, in the case of the changes
fromH0 toH2(1) and fromH0 toH2(2) (see the fifth and sixth rows
in Tables III), the nonrecursive algorithm makes many false isolations
whent0 = 10, due to an uncontrolled growth of the cumulative sum
St
1(1; 2).
The first simulation (see Table II) shows a relatively good accu-

racy of the asymptotic mean detection/isolation delay��l (8). In the
second case (see Table III) accuracy is lower because the true values
of the mean detection/isolation delay are small, and, hence, the ap-
proximation cannot be considered as asymptotic. It follows from the

3It is worth noting that: i) this suggestion is heuristic; ii) the tightness of the
bounds (11) is defined by several factors (not only by the “excess” errors), there-
fore, only partial improvement of the accuracy of the corrected equations can
be expected.

TABLE I
THE HYPOTHESESH (i)

proof of Theorem 2 that the proposed asymptotic upper bound (9) for
the probability of false isolation� cannot be fairly tight. The simula-
tion shows that the corrected term%i = %+k�1 � �2k, where%+ '
0:583 [9, Ch. X], suggested in (11), really improves this approxima-
tion of � in this case. The simulation confirms the results of The-
orem 2 forsupt �1 �t (j; l). Let us analyze the growth of the prob-
ability of false isolation�t whent0 ! 1 for the recursive test. It
follows from Theorem 2 that this growth should be more significant
whenmax(hd=�l;0; hi=minj 6=0;l �l;j) is small in comparison withhi.
It happens in the case of the change fromH0 toH2(i) (see the fifth,
sixth, and seventh rows in Table III).

IV. CONCLUSION

A simple recursive algorithm for diagnosis of abrupt changes in
random signals was proposed and its statistical performance was
investigated. An important feature of this algorithm is its ability to
warrant an acceptable level of false isolation whent0 > 1. Another
attractive feature of this algorithm is the fact that it is based onK � 1
parallel CUSUM rules. The CUSUM rules are well known in signal
processing, automatic control (fault detection), and industrial quality
control. Hence, this fact simplifies the implementation of the proposed
algorithm.

APPENDIX I
PROOF OFTHEOREM 1

We suppose that the thresholdshl;j are given by (7), wherehd � hi.
Let 0 < � < 1 and letnh be the smallest integer

� max
hd
�1;0

;
hi

minj 6=0;1 �1;j
(1� �)�1:

We assume thathd andhi are so chosen thatnh > 0. Let l = 1
(without any loss of generality) and we consider the probability

PPP 1
t (N1

r � t0 + 1 > M jNr � t0)

whereM = mnh andm is a positive integer number. Taking into
account that

gt(j; 0) = max
0�k�t

t

i=k+1

Zi(j; 0)

and n

i=k
. . . = 0 whenn < k, we get from (5)

PPP 1
t (N1

r � t0 + 1 > M jNr � t0)

� PPP 1
t min

j 6=1
max

0�k�t �1+M

t �1+M

i=k+1

Zi(1; 0)

� max
0�k�t �1+M

t �1+M

i=k+1

Zi(j; 0)� h1;j < 0 jNr � t0 :

(12)

Since the functionsgt(j; 0) (1 � j � K � 1) are Markov sequences,
it then follows that the behavior of the functiongt(j; 0) whent � t0
depends ongt �1(j;0) and the observationsXt ; Xt +1 . . .. To sim-
plify
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TABLE II
THE CHANGE FROMH TOH WHEN THE THIRD HYPOTHESISISH (i); i = 1; 5

TABLE III
THE CHANGE FROMH TOH (i); i = 1; 5, WHEN THE THIRD HYPOTHESISISH

the notations, we putt0 = 1 and start with the case ofgt �1(j; 0) = 0.
SincePPP (

j 6=1 Aj) � j 6=1 PPP (Aj), we get from (12)

PPP 1
1(N

1
r > M) �

j 6=1

PPP 1
1 max

0�k�M

M

i=k+1

Zi(1; 0)

� max
0�k�M

M

i=k+1

Zi(j; 0) < h1;j

�
j 6=1

PPP 1
1

M

i=1

Zi(1; 0)

� max
0�k�M

M

i=k+1

Zi(j; 0) < h1;j : (13)

Let us assume thatE1(Zi(j;0)) > 0 andj � 2 (we will discuss the
case whenE1(Zi(j;0)) � 0 and/orj = 0 below). We consider the
probability

pj(m) = PPP 1
1

M

i=1

Zi(1; 0) � max
0�k�M

M

i=k+1

Zi(j; 0) < h1;j

= PPP 1
1

M

i=1

Zi(1; j) + �M < h1;j (14)

where

�M = min
0�k�M

k

i=1

Zi(j; 0):

It follows from the definition ofnh and (7) thath1;j �nh�1;j(1��).
Let ~Zi(1; j)=Zi(1; j)��1;j , this yields

pj(m) � PPP 1
1

M

i=1

~Zi(1; j) + �M < nh�1;j(1� � �m) : (15)

Putting together the inequalities

nh�1;j(1� � �m) � �(�1;jM�=2)� (�1;jM�=2)

and

PPP 1
1(x+ y < a) � PPP 1

1(x < a=2) + PPP 1
1(y < a=2)

with (15), we get

pj(m)�PPP 1
1

M

i=1

~Zi(1; j)<�
�1;jM�

2
+PPP 1

1 �M<�
�1;jM�

2
:

(16)

The right side of (16) should be bounded above. Taking into account
the regularity conditions of Theorem 1, we get by Chernoff’s bound
(see details in [10, Ch. IV] and ([3, Ch. 4])

PPP 1
1

M

i=1

~Zi(1; j) < �
�1;jM�

2
� e

�MH �

(17)

whereHx(y) = sup!<0[y!� logE(e!x)] is the Cramér transform of
the distribution function of the random valuex andH~Z (1;j)(

�� �

2
)

is positive. On the other hand, it is easy to see that

PPP 1
1 �M < �

�1;jM�

2
� PPP 1

1 � �
��1;jM�

2
<1

where

��(x) = inffk � 1 :

k

i=1

Zi(j; 0) � xg

x < 0 and it is assumed thatinf ; = 1. This last is the probability
that the barrier��1;jM�=2 is crossed by the cumulative sum

k

i=1 Zi(j; 0) started at the origin whenE1(Zi(j;0)) > 0. Let Q
be the distribution function ofZi(j; 0) when L(Xi) = P1. Two
situations are possible. First, the random valueZi(j; 0) is one-sided,
i.e., it takes only nonnegative values with positive probability. In
this case, the answer is trivial,PPP 1

1[��(��1;jM�=2) < 1] = 0.
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Second,Zi(j; 0) is two-sided, i.e., it takes both positive and negative
values with positive probability.4 To compute an upper bound for
PPP 1

1[��(��1;jM�=2) < 1], the functionQ should be imbedded
in an exponential family [9, Ch. VIII]. For this reason we assume
that the m.g.f.'(�) = E1(e

�Z (j;0)) < 1 exists (the integral
e�xdQ(x) converges) in some neighborhood of0, � 2] � �; �[,

where� > 0 (the regularity condition of the theorem). It follows from
the properties of m.g.f. that� 7! '(�) is twice differentiable in this
open interval] � �; �[. Because the distribution ofZi(j; 0) is not
concentrated at zero, the second derivative'00(�) = x2e�xdQ(x)
is strictly positive in] � �; �[ and hence the function� 7! '(�) is
strictly convex (from below) in its interval of definition] � �; �[.
We next apply the “generalized” Wald’s inequality [2], [3], [9]:
PPP 1
1[��(x) <1] � e�� x, wherex < 0 and�1 < 0 is a negative root

of the equation'(�1) = 1(= '(0)) (the existence of a negative root
�1 is warranted because the random valueZi(j; 0) is two-sided,'(�)
is convex, and'0(0) = E1(Zi(j;0)) > 0). In our context this leads to

PPP 1
1(�M<��1;jM�=2)�PPP 1

1[��(��1;jM�=2)<1]�e�� � M�

where�� = j�1=2j. If h1;j !1, thennh !1. This means that for
any chosen0 < � < 1, 9h0 = h0(�) : 8h1;j � h0

pj(m) � e�� mn + e�� � mn � � e�� mn

for anym > 0, where�z = H~Z (1;j)(��1;j�=2) and the positive
constant�j is conveniently chosen.

Let us assume now thatE1(Zi(j;0)) < 0 andj � 2. It follows
from (14) that

pj(m) = PPP 1
1

M

i=1

Zi(1; 0) + �M < h1;j

where

�M = min
0�k�M

M

i=k+1

�Zi(j; 0):

Taking into account thath1;j � hd � nh�1;0(1� �) and ~Zi(1; 0) =
Zi(1; 0)� �1;0 we get the analog of (16), namely,

pj(m)�PPP 1
1

M

i=1

~Zi(1; 0)<�
�1;0M�

2
+PPP 1

1 �M<�
�1;0M�

2
:

(18)

As a result of [9, Appendix 2],�M has the same distribution as

min
0�k�M

k

i=1

�Zi(j; 0):

SinceE1(�Zi(j;0)) > 0, the results of the previous case (when
E1(Zi(j;0)) > 0) can be applied to the right-hand side of (18), re-
placing ~Zi(1; 0), �1;0, and�M by ~Zi(1; j), �1;j , and�M , respectively.
LetE1(Zi(j;0)) = 0, j � 2, and let" > 0 be a positive constant, then

pj(m)�PPP 1
1

M

i=1

Zi(1; 0)� max
0�k�M

M

i=k+1

(Zi(j; 0)+")<h1;j :

Hence, by analogy with (16), we get

pj(m) � PPP 1
1

M

i=1

~Zi(1; j) < �
�1;jM�

2

+PPP 1
1 �M < �

�1;jM�

2
+M" (19)

where

�M = min
0�k�M

k

i=1

(Zi(j; 0) + "):

4Taking into account thatE (Z (j; 0)) > 0, we get by Jensen’s inequality
E (Z (j; 0)) = x dQ(x) � [ xdQ(x)] = [E (Z (j;0))] > 0.
Hence, the distribution ofZ (j;0) is not concentrated at zero.

If " is so chosen that0 < " <
� �

2
, then again the results of the case

whenE1(Zi(j;0)) > 0 can be applied to (19). Finally, ifj = 0, then
gt(0; 0) � 0, we get

p0(m) � PPP 1
1

M

i=1

~Zi(1; 0) < nh�1;0(1� � �m)

� PPP 1
1

M

i=1

~Zi(1; 0) < ��1;0M�

and apply directly Chernoff’s bound as in (17). Therefore, we have
proved thatpj(m) � e�� mn holds for any sign ofE1(Zi(j;0))
and0 � j 6= 1 � K � 1. It follows from (13) that for any given
0 < � < 1 9h1(�) � h0 : 8h1;j � h1(�)

PPP 1
1(N

1
r > mnh) � (K � 2)e�� mn � e��mn

where� > 0 is a constant. By using the method proposed by Lai [4]
we get

E1
t n�1h N1

r � t0 + 1 jNr � t0; gt �1 = 0

=

1

m=0

PPP 1
t n�1h N1

r � t0 + 1 > m jNr � t0; gt �1 = 0

wheregt �1 = (gt �1(2;0); . . . ; gt �1(K � 1; 0)), and then,

E1
t N1

r � t0 + 1 jNr � t0; gt �1 = 0

� max
hd
�1;0

;
hi

minj 6=0;1 �1;j
(1� �)�1(1� e��n )�1: (20)

Let us discuss now the case whengt �1(j;0) = �j � 0. From (14) it
follows that

pj (m j gt �1(j;0) = �j)

= PPP 1
1

M

i=1

Zi(1; 0)� max
0�k�M

M

i=k+1

Ẑi(j; 0) < h1;j j �j

whereẐi(j; 0) = Zi(j; 0) wheni > 1 andẐ1(j; 0) = Z1(j; 0) + �j .
It is easy to see that

pj (m j gt �1(j;0)=�j)

�PPP 1
1

M

i=1

Zi(1; 0)� max
0�k�M

M

i=k+1

Zi(j; 0)<h1;j+�j j �j : (21)

Let us suppose that�t �1 = max2�j�K�1 gt �1(j;0). It follows
from (21) that the following inequality is fulfilled for everyj : 2 �
j � K � 1:

pj (m j gt �1(j;0)=�j)

�PPP 1
1

M

i=1

Zi(1; 0)� max
0�k�M

M

i=k+1

Zi(j; 0)<h1;j+�t �1 j �j :

By applying the previously obtained results (from (14)–(20)), we get
from (20), replacinghd andhi by hd + �t �1 andhi + �t �1, respec-
tively,

E1
t N1

r�t0+1 jNr�t0; gt �1

� max
hd+�t �1

�1;0
;

hi+�t �1

minj 6=0;1 �1;j
(1��)�1(1�e��n )�1: (22)

Taking into account thatE1
t (�t �1) = E0(�t �1) and in view of the

property

E(y jA) = Ex[E(y jB; x) jA]

of iterated conditional expectations [10], we get from (22)

E
1
t N

1
r�t0+1 jNr�t0

�max
hd+E0(�t �1)

�1;0
;
hi+E0(�t �1)

minj 6=0;1 �1;j
(1��)�1(1�e

��n )�1:

(23)
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Note here thatNr = min1�j�K�1fN
j
rg. It follows from this fact, (2)

and (23) that

��1 � max
hd + supt �1E0(�t �1)

�1;0
;

hi + supt �1E0(�t �1)

minj 6=0;1 �1;j

� (1� �)�1(1� e
��n )�1: (24)

From [9, Appendix 2] it follows that

Gt(x) = PPP 0 (gt(j; 0) � x) = PPP 0 (�+(x) � t)

where�+(x) = inffk � 1 : k

i=1 Zi(j; 0) � xg; x > 0, and

G1(x) = lim
t!1

PPP 0(gt(j; 0) � x) = PPP 0(�+(x) <1):

By applying Wald’s inequality to the LR k

i=1 Zi(j; 0) between hy-
pothesesHj andH0 [2], [3], [9], we getG1(x) � e�x. It is easy to
see that

sup
t �1

E0(gt �1(j;0)) = sup
t �1

1

0

Gt �1(x)dx

�
1

0

G1(x)dx � 1:

Hence

sup
t �1

E0(�t �1) �
K�1

j=2

sup
t �1

E0(gt �1(j;0)) � K � 2:

Combining this with (24) and taking into account that� is arbitrary,
� > 0 andnh ! 1 ashd � hi ! 1, we get (8).

APPENDIX II
PROOF OFTHEOREM 2

Let x1; . . . ; xn andy1; . . . ; yn be two sets of real numbers. Since

max(0; x1 � y1; . . . ; xn � yn)

� max(0; x1; . . . ; xn)�max(0; y1; . . . ; yn)

it then follows that for anyt � t0

gt(j; l) = max
t �1�k�t

t

i=k+1

�Zi(j; l)

� max
t �1�k�t

t

i=k+1

�Zi(j; 0)

� max
t �1�k�t

t

i=k+1

�Zi(l; 0) = gt(j; 0)� gt(l; 0) (25)

where �Zi(j; l) = Zi(j; l) wheni > t0 and �Zt (j; l) = �Zt (j; l) +
gt �1(j;0) and �Zi(m; 0) = Zi(m; 0) wheni > t0 and �Zt (m; 0) =
Zt (m; 0) + gt �1(m; 0) with m = l or m = j. Let us consider the
“artificial” stopping timeN jl

t which is activated at timet0

N
jl
t = infft � t0 : gt(j; l) � hig

gt(j; l) = (gt�1(j; l) + Zt(j; l))
+

gt �1(j; l) = gt �1(j;0): (26)

From the definition of the rule(Nr; �r) it follows thatfN l
r = N j

rg =
;; j 6= l. Taking into account this fact, (25), and (26), we obtain

�t (j; l) = PPP
l
t (�r = j jNr � t0)

� PPP
l
t N

j
r < �N j

r jNr � t0

� PPP
l
t N

jl
t < �N j

r jNr � t0 (27)

where �N j
r = minm6=jfN

m
r g. LetM = minfN jl

t ;
�N j
rg. It is obvious

thatN jl
t = M + I

fN >Mg
(N jl

t �M), whereIA is the indicator of

A. By computing the conditional expectation ofN jl
t �M underP l

t

givenNr � t0, we get

E
l
t N

jl
t �M jNr � t0

= E
l
t N

jl
t �M j fN jl

t > Mg \ fNr � t0g

� PPP l
t N

jl
t > M jNr � t0 : (28)

Combining (27) with (28) and

PPP
l
t (N jl

t < �N j
r jNr � t0) � 1� PPP

l
t N

jl
t > M jNr � t0

we obtain

�t (j; l) � 1�
El
t (N jl

t �M jNr � t0)

El
t N

jl
t �M j fN jl

t > Mg \ fNr � t0g
: (29)

Since the functiongt(j; l) is a Markov sequence, it then follows that the
random variableN jl

t �n givenN jl
t > n � t0 depends ongn(j; l) and

Xn+1; Xn+2 . . .. Let us denoteEl N
jl
1 j g0(j; l) = x as a function

of x byL(x) on [0;hi]. It follows from [1] that the average run length
L(x) of the stopping timeN jl

1 , when the decision functiongt(j; l)
starts fromx � 0, is a decreasing function ofx. The maximum is
obtained forx = 0 and is given byL(0). Hence

E
l
t (N jl

t �M j fN jl
t > Mg \ fNr � t0g) � L(0):

After substitution of the last inequality into (29) and taking into account
that for all largehd; hi; El

t (N jl
t �M jNr � t0) > 0, we obtain

sup
t �1

�t (j; l) � 1�
inft �1E

l
t N

jl
t � t0 + 1 jNr � t0

L(0)

+
supt �1E

l
t (Nr � t0 + 1 jNr � t0)

L(0)
: (30)

Let Ft(x) = PPP 0 (gt(j; 0) < x) for x � 0. In view of the Markov
property ofgt(j; l), and denoting the density of the distributionFt(x)
by ft(x), we get

E
l
t N

jl
t � t0 + 1 jNr � t0

�
h

0

L(x)ft �1(x)dx = L(0)� L(hi)Gt �1(hi)

+
h

0

dL(x)

dx
Gt �1(x)dx: (31)

It follows from [9] that

PPP 0(gt(j; 0) < x) = PPP 0 max
0�k�t

k

i=1

Zi(j; 0) < x

henceG1(x) � G2(x) � � � � � G1(x) for anyx � 0. Since the
functionx 7! L(x) is decreasing on the interval[0; hi], it results from
(31) that

inf
t �1

E
l
t N

jl
t � t0 + 1 jNr � t0 �

h

0

L(x)f1(x)dx: (32)

From [1] it follows that

L(x)=El[T (x)]+PPP l(ST ��x)L(0)� l(x)

=
1

�l;j
x�(hi+!)e

�(h �x) + 1�e�(h �x) L(0) (33)

where! = supr>0El(Zt(j; l) � r jZt(j; l) � r > 0) is an upper
bound for the average “excess” over the boundaryhi (see details in
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[1], [3], [9]), El[T (x)] is the average sample number of the sequen-
tial testT (x) = infft � 1 : (St � hi � x) [ (St � �x)g with
St =

t

i=1
Zt(j; l), andPPP l(ST � �x) is the probability that the cu-

mulative sumSt of the sequential testT (x) reaches the lower threshold
�x. By using the lower boundl(x) from (33) instead ofL(x) in (32)
and taking into account (31) we get

inf
t �1

E
l
t N

jl
t � t0 + 1 jNr � t0

� �
1

�l;j
(hi + !)e�h + (1� e

�h )L(0) +
h

0

G1(x)

�l;j
dx

�
(hi + !)e�h

�l;j

h

0

e
x
G1(x) dx� e

�h
hiL(0): (34)

Taking into account that0 � G1(x) � e�x andL(0) � eh , we
obtain, after integration of the third and fourth terms in the right side
of (34), by combining (34) with (30), the following inequality:

sup
t �1

�t (j; l)
<
� e

�h sup
t �1

E
l
t N

l
r � t0 + 1 jNr � t0 + hi

ashi ! 1. By using the results of Theorem 1 we get the following
upper bound for the probability of false isolation:

sup
t �1

�t (j; l)
<
� e

�h max
hd

�l;0
;

hi

minj 6=0;l �l;j
+ hi (35)

ashi !1 andhd � hi. Equation (9) follows immediately from (35).
The proof of Theorem 2 is finished.
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Validation of Nearest Neighbor Classifiers

Eric Bax, Member, IEEE

Abstract—This correspondence presents a method to bound the out-of-
sample error rate of a nearest neighbor classifier.1 The bound is based only
on the examples that comprise the classifier. Thus all available examples
can be used in the classifier; no examples need to be withheld to compute
error bounds.

The estimate used in the bound is an extension of the holdout estimate.
The difference in error rates between the holdout classifier and the classi-
fier consisting of all available examples is estimated using truncated inclu-
sion and exclusion.

Index Terms—Error bounds, machine learning, nearest neighbor classi-
fier, statistics, validation.

I. FRAMEWORK

Consider the following machine learning framework. There is a
joint input–output distribution. For example, the input distribution
could consist of typical satellite images of the North Atlantic Ocean,
and the output could be1 if the image contains a large iceberg and0
otherwise.

We have a set of in-sample data examples

S = f(xxx1; �1); . . . ; (xxxn; �n)g

with each example drawn independent and identically distributed
(i.i.d.) from the joint input–output distribution. We will use a nearest
neighbor classifier, composed of the in-sample examples and a dis-
tance metric, to classify the inputs of test examples drawn i.i.d. from
the input–output distribution. For each test input, the classifier returns
the output corresponding to the closest in-sample input. The test error
rate is the fraction of test inputs for which the classifier and the test
output disagree. The underlying error rateLn is the expected test error
rate over the input–output distribution. The average ofLn over all size
n in-sample data sets drawn from the input–output distribution isRn.
To make the definitions ofLn andRn explicit, letyNN be the output
of the nearest neighbor classifier, and lety be the test output. Then

Ln = PrfyNN 6= y jSg (1)

and

Rn = ESLn = PrfyNN 6= yg: (2)

(We use subscripts to denote the distributions over which expectations
are taken.)

II. I NTRODUCTION

While this correspondence focuses onLn, the error rate of the classi-
fier at hand, much work in the past has focused onRn, the average error
rate over classifiers formed from randomly drawn examples. Cover
and Hart [7] proved that under mild continuity assumptions,R1 is no
more than twice the Bayes (optimal) error rate. Cover [6] and Psaltis,
Snapp, and Venkatesh [17] have investigated the convergence ofRn to
R1. Cover [6] worked with the case of a one-dimensional input space,
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